INEQUALITY'S BLOG

July 26, 2010

(Van Khea):Problem 005

Filed under: the new math — KKKVVV @ 3:53 pm

Let a, b, c, p, q, r>0 . Prove that:

\displaystyle \frac{2\sqrt{2}}{(a+b)\sqrt{p+q}}+\frac{2\sqrt{2}}{(b+c)\sqrt{q+r}}+\frac{2\sqrt{2}}{(c+a)\sqrt{r+p}}\displaystyle \leq \frac{1}{a\sqrt{p}}+\frac{1}{b\sqrt{q}}+\frac{1}{c\sqrt{r}}

Leave a Comment »

No comments yet.

RSS feed for comments on this post. TrackBack URI

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s

Create a free website or blog at WordPress.com.

%d bloggers like this: