INEQUALITY'S BLOG

August 1, 2010

Problem 042

Filed under: Uncategorized — KKKVVV @ 8:09 am

Let f:R\longrightarrow R_{0}^{+} and f''>0. For all 0<a\leq b\leq c ; a, b, c\in I ; Prove that:

c^3a^2f(a)+a^3b^2f(b)+b^3c^2f(c)\geq abc(caf(a)+abf(b)+bcf(c))

 

Van Khea

Leave a Comment »

No comments yet.

RSS feed for comments on this post. TrackBack URI

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s

Blog at WordPress.com.

%d bloggers like this: