# INEQUALITY'S BLOG

## August 23, 2011

### Problem 304 Van Khea

Filed under: Problem by Van Khea — KKKVVV @ 12:52 pm

If $a, b, c$ are positive real numbers such that $a^2+b^2+c^2+2abc=5$ then prove that

$\displaystyle \frac{1}{a^3+b^3+c^3}+\frac{1}{abc}\geq \frac{4}{3}$

Solution
We have
$\displaystyle \frac{1}{a^3+b^3+c^3}+\frac{1}{abc}=\frac{1}{a^3+b^3+c^3}+\frac{a^2+b^2+c^2+2abc}{5abc}$
$\displaystyle \Rightarrow \frac{1}{a^3+b^3+c^3}+\frac{a}{5bc}+\frac{b}{5ca}+\frac{c}{5ab}+\frac{2}{5}\geq \frac{4}{3}$
$\displaystyle \Leftrightarrow \frac{1}{a^3+b^3+c^3}+\frac{a}{5bc}+\frac{b}{5ca}+\frac{c}{5ab}\geq \frac{14}{15}$
Let $\displaystyle a=\sqrt[3]{\frac{3x}{x+y+z}}; b=\sqrt[3]{\frac{3y}{x+y+z}}; c=\sqrt[3]{\frac{3z}{x+y+z}}$ then we get $a^3+b^3+c^3=3$
Sitting $a, b, c$ yields
$\displaystyle \frac{1}{3}+\frac{\sqrt[3]{x+y+z}}{5\sqrt[3]{3}}\biggl(\sqrt[3]{\frac{x}{yz}}+\sqrt[3]{\frac{y}{zx}}+\sqrt[3]{\frac{z}{xy}}\biggl)\geq \frac{14}{15}$
$\displaystyle \Leftrightarrow \frac{\sqrt[3]{x+y+z}}{\sqrt[3]{3}}\biggl(\sqrt[3]{\frac{x}{yz}}+\sqrt[3]{\frac{y}{zx}}+\sqrt[3]{\frac{z}{xy}}\biggl)\geq 3$
From $AM-GM$ inequality we have
$\sqrt[3]{x+y+z}\geq \sqrt[3]{3\sqrt[3]{xyz}}$ and $\displaystyle \sqrt[3]{\frac{x}{yz}}+\sqrt[3]{\frac{y}{zx}}+\sqrt[3]{\frac{z}{xy}}\geq 3\sqrt[3]{\frac{1}{\sqrt[3]{xyz}}}$
then we get
$\displaystyle \frac{\sqrt[3]{x+y+z}}{\sqrt[3]{3}}\biggl(\sqrt[3]{\frac{x}{yz}}+\sqrt[3]{\frac{y}{zx}}+\sqrt[3]{\frac{z}{xy}}\biggl)\geq \frac{\sqrt[3]{3\sqrt[3]{xyz}}}{\sqrt[3]{3}}.3\sqrt[3]{\frac{1}{\sqrt[3]{xyz}}}\geq 3$
Therefore the proof is completed. Equality occurs for $x=y=z\Leftrightarrow a=b=c=1$