INEQUALITY'S BLOG

August 29, 2012

vankhea 2010.12 inequality

Filed under: Van Khea 06 — KKKVVV @ 10:43 am

Let a, b, c, p, q be positive real numbers such that abc=1. Prove that
\displaystyle \frac{a^m}{(pb+qc)^n}+\frac{b^m}{(pc+qa)^n}+\frac{c^m}{(pa+qb)^n}\geq \frac{3}{(p+q)^n}
with m>0 ; n\in R;m\geq n satisfy \displaystyle mln3+nln \frac{4}{3}\geq ln \frac{9}{4}

Leave a Comment »

No comments yet.

RSS feed for comments on this post. TrackBack URI

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s

Create a free website or blog at WordPress.com.

%d bloggers like this: