INEQUALITY'S BLOG

August 29, 2012

vankhea 2010.12 inequality

Filed under: Van Khea 06 — KKKVVV @ 10:43 am

Let a, b, c, p, q be positive real numbers such that abc=1. Prove that
\displaystyle \frac{a^m}{(pb+qc)^n}+\frac{b^m}{(pc+qa)^n}+\frac{c^m}{(pa+qb)^n}\geq \frac{3}{(p+q)^n}
with m>0 ; n\in R;m\geq n satisfy \displaystyle mln3+nln \frac{4}{3}\geq ln \frac{9}{4}

Advertisements

December 16, 2010

Inequality 06: VAN KHEA

Filed under: Van Khea 06 — KKKVVV @ 5:22 pm